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Synopsis 

In this paper, a new method for correcting GPC results in order to take into account the axial 
dispersion of a given set of columns is proposed. The idea is to evaluate the different average mo- 
lecular weights and the polydispersity for a given elution volume. In order to do so, one needs only 
to know the efficiency of the set of columns and the different derivatives a t  a given point of the 
chromatogram. Some possible applications of this method are reviewed mainly for the character- 
ization of polydispersity and for the determination of the viscosity law if one uses the universal cal- 
ibration. 

INTRODUCTION 

Gel permeation chromatography (GPC) is one of the best tools for the char- 
acterization of polymers; it has even been used for a few years as a preparative 
technique. More recently, the use of an automatic viscometer as second detector 
has made possible the determination of the instantaneous viscosity at  a given 
elution volume thus making possible a direct measurement of molecular weight 
if one assumes the validity of universal calibration. 

The interpretation of the results is straightforward as long as one does not take 
into account the axial dispersion. But, unfortunately, this approximation is not 
always sufficient. For instance, the fractions obtained in preparative GPC are 
not absolutely monodisperse. Many authors have suggested correction methods 
based on the deconvolution technique. They are difficult to handle and not very 
successful. 

In this paper, we would like to present an approximation method by which 
one can evaluate the polydispersity of a fraction eluted at  a given elution volume 
as a function of the molecular weight distribution of the sample and the axial 
dispersion. 

PRINCIPLE OF THE METHOD 

According to Tung,l the chromatogram of the polymer is the convolution of 
two distribution functions. One is the distribution C( V )  of the polymer as a 
function of the elution volume V; C( V)d  V is the amount of the polymer with an 
elution volume between V and V + dV; and G(  V - V , )  is the axial dispersion 
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function. It represents the shape of the chromatogram for a monodisperse 
system with elution volume V, with normalization at  unity of the area between 
the curve and the elution volume axis. 

The chromatogram, then, has the following equation: 

where F(  V,) is the response of a detector sensitive to the concentration and 10" 
F (  Ve)dV, is the total amount of polymer injected. 

The first hypothesis we shall make is to assume that G (V - V,) is a Gaussian 
distribution and has the following equation: 

where (T is the axial dispersion parameter. This assumption is not limiting the 
generality of our solution, since in practice with an apparatus in good working 
conditions, the curve obtained for a monodisperse system has always this shape. 
The parameter (T can depend on the elution volume V,; it is usually a smooth 
function of V,. Therefore, if we limit ourself to a small range of elution volume, 
we can always neglect its variations. 

Another approximation is related to the calibration curve. For the sake of 
simplicity, we shall deal simultaneously with two cases. In the first case, we 
assume that one studies only a kind of polymer, i.e., that one uses a calibration 
curve in In M as function of the elution volume V,. In a small range of elution 
volume, this curve can always be taken as a straight line with equation 

M 
V - V, = a ln- 

Me 
(3) 

where Me is the molecular weight of the specie eluted at  volume V,. 
In other cases, it is better to use the universal calibration and the hydrody- 

namical volume 4 to characterize the set of columns. In this case, one will 
write 

4 V - V , = A l n -  
4 e  

(4) 

If one uses the relation 4 = [VIM and if the polymer obeys a viscosity law of the 
Mark-Houwink type, i.e., [v] = KM", the relation between a and A is evi- 
dent: 

A = a(a  + 1) (5) 
Moreover, if the calibration curve is a straight line in a large range of elution 
volume for M ,  this will be also the case for 4. 

Our purpose is to evaluate the different averages of A4 or 4 of a fraction eluted 
at  volume Ve. Using for G its Gaussian expression (2), eq. (1) can be written 
as 

Using the calibration curve, it is possible to change the variable and to use, instead 
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of V, the quantities M or 4. The concentration C( V )  d V is transformed to C ( M )  
dM or C(4) d4.  They still characterize the polydispersity of the injected sample. 
One obtains 

a2 M 
F ( V e )  = - 1’- C ( M )  exp [- ln2 -1 dM 

& -- Me 
or 

(7) 

F(  V,) is proportional to the total amount of polymer eluted at elution volume 
V,. The quantity under the integral is the contribution of polymers with either 
molecular weight between M and M + d M  or 4 and 4 + d4.  We want now to 
obtain averages of M and 4; they can be defined as 

being respectively equal to 1, -1, and a for the weight-, number-, and viscosi- 

We can use the same definitions for 4 writing 
metric-average molecular weights. 

For instance, with these notations of the viscometer-average hydrodynamical 
volume, 4, P is equal to a/(a + 1). 

Going from summation to integration, we define the functions 

Y(p)  = So+- M @ C ( M )  d M  (11) 

Thus, the (3 averages become 

These results are independent on the normalcy of both y ( P )  and Y* (P) .  

EVALUATION OF Y(j3) AND Y*(j3) 

Under the summation sign, we have the product of two functions; one is sharp 
peaked, its shape being governed by the efficiency of the column set through the 
parameter T = u/a or T* = u/A; the other characterizes the polydispersity of the 
original sample. Neglecting the axial dispersion is the same as assuming u = 
0. It seems, therefore, reasonable to try to improve this approximation ex- 
panding the integrals as functions of 7 or T * .  This is tedious but straightfor- 
ward. 
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We first introduce the new variable z = In MIM, and assume that we have C 
as function of In M .  We thus obtain 

Y(p)  = s+= C(z + In M e )  exp (15) 
0 

Then, 

(17) 
2 2  

Y(p)  = MeP 

We now introduce the new variable: 

C(z  + In M e )  exp I-  - + p z )  dz 
2r2 

x = z - 7 2 p  

obtaining 

It is now easy to expand the expression of C in a Taylor series. Each term can 
be integrated giving the final result 

where n = 2k - p and the quantities C P 2 k - p  are Newton’s expansion coefficients. 
A similar expression can be written for Y* replacing M by 4 and T by T * .  

From these results, one obtains the averages M P  and $6 by the general for- 
mulas 

1 C”’ ( p  - 1) C ’ 2  1 C’C”) ]  (20) + 7 4  -_--  (2 2 c 2 c 2  2 c 2  

+-------- 1 C”’ ( p  - 1) C ’ 2  1 C’”’)] (21) + 7*4  ($% 
2 c  2 c 2  2 c 2  

where we have stopped the expansion after 74 or T * ~ .  

Since the molecular weight M is much more used than the hydrodynamical 
volume 4, we shall first discuss in terms of molecular weight. Putting in eq. (20) 
p = 1, -1 and (Y one obtains the classical averages M,, M,, and M,: 

1 C”’ 1 C’”’)] (22) M ,  = M e  [ exp [$}I [ 1 + 
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~ , = = ~ , [ e x p [ i ‘ ; j ]  [ i+r2c  C‘ 

1 C”’ (a - 1) C’2 “’C”)] (23) + r 4  --+------- (Z’ 2 c 2 c2 2 c 2  
~ , , = ~ , [ e x p ( - z 1 ]  [ 1 + r 2 ~  C‘ 

+ 7 4  ---+--+--- 1 C” 1 C”’ C’2 “ ’ C ” ) ]  (24) 
( 2 c 2 c c2 2 c 2  

Then, the polydispersity index is equal to 

Until now, we have limited our investigation to precise fractions with elution 
V,. Since, if one uses preparative GPC or if one uses a viscometric detector of 
the capillary type, it is usual to collecting fractions eluted between V1 and V2, 
it could be interesting to generalize our formulas to this case. 

Formally, it is very simple; one has merely to introduce, instead of Y(P) or 
Y*(p),  the function Z(p) and Z*(P) defined as 

and 

After the same type of calculation as before, the following expression can be 
obtained for the expansion of Z(p): 

Moreover, one can obtain Z*(p) replacing 7 and M by r* and 4. 

correction as long as Vz - V1 is not too large. 
These expressions could be used with digital computers, but this is a small 

CASE OF THE GAUSSIAN DISTRIBUTION 

There is an important special case where eq. (6) can be integrated. It occurs 
when the distribution of C(ln M) or C(1n 4) is Gaussian. This type of distribution 
is known as the Wesslau distribution: 

1 
exp [ - 2y2 In2 “1 1 1  

C(ln M )  = - - 
MO 

It depends on two parameters: Mo, the maximum frequency molecular weight; 
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and y, the width of the distribution. The following relations are well known: 

M,=Moexp + - y  [ : 2l 
M, = Mo exp 

M,, = MO exp 

If the polymer has a Wesslau distribution and obeys the Mark-Houwink relation 
[v] = KMa, we have 

1 1  exp I - p l n 2 k J  1 
C(ln $) = - - 

6 y* $0 

with 

(33) 

(34) 

With these values, integration of eq. (6) is straightforward, and one obtains 

and 

where VO is the elution volume of the peak of the distribution. 
It is obvious that the fractions are Gaussian of the Wesslau type. They are 

characterized by two parameters: the molecular weight Mpeak corresponding 
to Mo of eq. (29) and the polydispersity index y’? 

Mpeak = Me l/ l+r2/y2 Mol/l+y2/r2 (37) 
1 1 1  - +- _ - _  

y’2 y2 7 2  

From these values, M, and M, can be easily deduced. 

acterized by $ peak and y*‘ and we have 
The same is valid for $. Each fraction is Gaussian of the Wesslau type char- 

& = del l l l+r*2 /y*2~01 / l+y*~ /r*2  (39) 

1 1  - +- 1 

y*r2 Y*2 7*2 

As in the preceding case, we have tried to see what happens when, instead of 
an instantaneous fraction, one uses a finite elution volume V2 - V1. 



AXIAL DISPERSION IN GPC 1961 

The calculations are made following exactly the same scheme as in eqs. (26) 
and (28), and one obtains 

where 

The function under the summation sign can be easily integrated between two 
limits. 

The average molecular weights can be deduced: 

EV '2(1) 
M ,  = MO exp 1; y21 

v2(o) 

Ev1V2(a) l l n  

Ev, v2(0) 1- y2) Evl v2(-1)  

M v  = M o  [ y2}  [ Evl V 2 ( 0 ) ]  

M ,  = Mo exp 

- = exp (y2) 
Mr2 (Evl v2(0))2 

M ,  EvIV2(1) X EvlV2(-1) 

where 

DISCUSSION OF RESULTS 

Characterization of the Polydispersity of the Fractions 

Looking at  the results obtained for a Gaussian chromatogram, one sees that 
the polydispersity of the fractions is independent of the elution volume. In this 
case, all fractions are Gaussian (Wesslau-type distribution), and, as we have said, 
they are characterized by a parameter y' such as 

1 1 1  - +-  
7'2 y 2  7 2  

From this expression, one sees that all the fractions are rather narrow since the 
inequality yr2 < T~ is always valid. It means that for all fractions we can 
write 

M J M ,  6 exp r2 

This remark can be extended to the general case quite easily. From expression 
(25), if one neglects terms of the order r4 and more, one obtains also fractions 
of the Gaussian type and constant polydispersity with the equality M J M ,  = 
exp r2. 

For more careful and precise determination, it can be interesting to see the 
effect of the coefficient of r4. This coefficient can be rewritten as d2 log c ld  
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log2M. This quantity is a constant for the Wesslau distribution; but since its 
order of magnitude is small for a good set of columns, we do not pursue its dis- 
cussion. 

Application to Recycling 

If one takes the ideal case where the volume dVe of the fractions is very small, 
one can see immediately that after n runs in a recycling process,2 relation (38) 
becomes 

1 1 n  - -_ 2 -  +- 
Yn Y' r2 

Therefore, the polydispersity of a fraction is given by the relation 

This means that if instead of one column one uses n identical columns, the effi- 
ciency parameter ala or alA is divided by 6, this is quite obvious from the 
definitions. 

This result on the polydispersity of the fractions being quite trivial, since we 
have shown that GPC with a good machine gives narrow fractions if the efficiency 
is good, one could question the legitimacy and the utility of this calculation. We 
want to show now that some more useful results can be obtained if one compares 
the averages to what we have called Mel. 

Relation Between M Elution and the Molecular Weights 

It is usual to assume that the molecular weight or the hydrodynamic volume 
obtained from the elution volume and the calibration curve represents the mo- 
lecular weight of the sample or its hydrodynamic volume. After our'discussions 
showing the low polydispersity of the fractions, this seems quite justified; but 
a more careful examination shows that it is not the case and that this correction 
has to be taken into account for correct evaluation of the data. 

It is usual to define Mpeak as (MnM,)1/2; it coincides with the maximum of the 
distribution in the Gaussian case and should not be far from it even if the dis- 
tribution is not completely Gaussian. From our results, one sees that Mpeak, M,, 
M,, and Mn differ from Me, by a factor which is first order in 72. Therefore, this 
correction is essential and has to be taken into account. From formulae (22), 
(231, and (24), one sees that it depends on the sign of the quantity d log Cld log 
M. If this quantity is positive, all the averages are larger than Me1; if it is neg- 
ative, it is the contrary. This can be explained qualitatively very easily, and a 
similar correction was proposed on a purely empirical basis by H.eitz3 and used 
by Servotte and De B r ~ i l l e . ~  

Some remarks have to be made concerning the use of this correction: 
1. We do not know the polydispersity curve c = f(1og M); therefore, the esti- 

mation of d log Cld log M and of the higher terms is theoretically impossible. 
But, since this is only a correction, it seems justified to use the chromatogram 
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to evaluate these quantities, since with the actual efficiency of the columns, the 
difference between the corrected curve and the chromatogram is negligible. 

2. We have assumed that 7 or T* is constant. Since we are making a calculation 
for each point of the curve, it is very easy to take into account the variations of 
the efficiency of the columns as function of elution volume, using for T the defi- 
nition av,/(dV,/d log M ) .  In practical cases, this quantity does not vary rapidly 
with Ve,  which justifies completely this procedure. 

APPLICATION TO THE CORRECTION OF EXPERIMENTAL 
RESULTS 

Using the correction we have presented here, it is possible to obtain much more 
precise results. 

Determination of Polydispersity 

The classical method for the determination of polydispersity consist in dividing 
the chromatogram in segments of height hi corresponding to elution volume V, 
and molecular weight Me; and to write 

for M ,  and similar expressions for M,, M ,  .-. . 
In order to obtain better results, one has to replace Me; by Mwi, Mni, Mni, using 

formulae (22), (23), and (24). This takes into account axial dispersion and leads 
to a much better precision. It has to be noted that if 7 is constant and if the 
polymer has a Gaussian distribution, this correction can be made in a much 
simpler way using the completely integrated equations. 

Determination of Viscosity Law of an Unknown Polymer 

In this case, one has to use the universal calibration. Experiments made using 
an additional viscometric detector give 

Ve;t Ci, [ali 
From universal calibration, one obtains &. Usually, one calculates the ratio 
c#q/[v]i in order to obtain Mi, but this Mi is an elution molecular weight and not 
a viscometric-average molecular weight. One has to correct &, which is really 
a into an average corresponding to viscosity-average molecular weight. This, 
is only possible if one knows the Mark-Houwink coefficient (Y but, as we have 
seen, it is possible to use a rough approximation for it since the results are not 
very sensitive to its real value. 

In conclusion, we hope that this new correction method will be useful and 
improve the precision 6f gel permeation chromatography asg quantitative an- 
alytical tool. 
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